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Abstract
We propose to use negativity and entanglement witnesses to study quantum
phase transitions in the bilinear–biquadratic and anisotropic XXZ spin-1
models. We obtain an analytical expression of negativity in the XXZ model
and an entanglement witness. The roles of the negativity and entanglement
witnesses in the quantum phase transitions in these two models are studied
numerically.

PACS numbers: 71.10.Fd, 71.30.+h, 75.10.Jm

1. Introduction

In the past two decades, various kinds of properties of spin chains have been studied.
Specifically, spin-1 chains attract more attention since Haldane predicts that the one-
dimensional Heisenberg chain has a spin gap for integer spins [1]. In these studies, the
bilinear–biquadratic (BB) Heisenberg model and the anisotropic spin-1 XXZ model have
played important roles [2–5], and the corresponding Hamiltonians are given by

HBB =
N∑

i=1

cos θ(si · si+1) + sin θ(si · si+1)
2, (1)

HXXZ =
N∑

i=1

(sixsi+1x + siysi+1y + �sizsi+1z), (2)

respectively. Here, si denotes the spin-1 operator at site i,� characterizes the anisotropy of
the model, and we assume the periodic boundary conditions. The first Hamiltonian exhibits a
SU(2) symmetry, and displays a very rich quantum phase diagram [6]. For the second model, it
was found that between the ground-state gapless XY phase and the doublet antiferromagnetic
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(AF) phase, there exists a new phase characterized by a nonmagnetic singlet state over an
extended range of � values (0.61 � � � 1.18) [5, 7–9]. This is completely different from
that in the spin-1/2 XXZ model.

The study of quantum phase transition (QPT) occurred at zero temperature is very
challenging, and there exist different approaches. Recent studies reveal that the quantum
entanglement can be an efficient indicator of QPT [11, 10]. Quantum entanglement lies at the
heart of quantum mechanics, and can be exploited to accomplish some physical tasks such
as quantum teleportation. Spin-1/2 systems have been considered in most of these studies.
However, due to the lack of entanglement measure for higher spin systems, the entanglement in
higher spin systems has been studied less. There are several proceeding works on entanglement
in spin-1 chains. Fan et al [12] and Verstraete et al [13] studied entanglement in the bilinear–
biquadratic model with a special value of θ , i.e., the AKLT model [2]. Zhou et al studied
entanglement in a spin dimer [14]. Gu et al [15] and Legaza et al [16] calculated the two-site
entropy in spin-1 systems.

We study pairwise entanglement of two spins in spin-1 many-body systems. The two
spins are in a mixed state after tracing out other spins. For mixed-state entanglement of two
spin ones, there are no operational entanglement criteria until now. However, we still can use
the Peres–Horodecki criterion which gives a qualitative way for judging if a state is entangled
[17]. It is well known that it cannot detect bound entanglement in higher-dimension systems.
For states with certain symmetries, this criterion is good enough to characterize entanglement
[18, 19]. The quantitative version of the criterion was developed by Vidal and Werner [20].
They presented a measure of entanglement called negativity. The negativity of a two-spin
state ρ is defined as

N (ρ) =
∑

i

|µi |, (3)

where µi is the negative eigenvalue of ρT2 , and T2 denotes the partial transpose (PT) with
respect to the second system. If N > 0, then the two-spin state is entangled.

In addition to negativity, the entanglement witness (EW) [21] is also considered.
Entanglement witnesses are physical observables which are closely related to negativity,
and may be used to signify QPT points. An entanglement witness is an observable W which
satisfies Tr(Wρsep) for all separable states ρsep, and Tr(Wρ) < 0 for at least one entangled
state ρ.

We organized our paper as follows: In section 2, we give the negativity expression for
the bilinear–biquadratic system, and derive the negativity for the XXZ system and give a new
entanglement witness operator. In section 3, we give numerical results of negativity and
entanglement witnesses, and discuss relations with QPTs. Conclusion is given in section 4.

2. General expression of negativity

We now give the negativity expressions in the above two spin-1 models.

2.1. The bilinear–biquadratic model

The BB Hamiltonian is SU(2)-invariant, so does the thermal state ρT = e−βH /Z. Here,
β = 1/T , the Boltzmann constant is set to be one, and Z is the partition function. The
ground state is obtained from the thermal state by taking the zero-temperature limit. This
kind of ground state was referred to thermal ground state [11], and has the benefit that it is
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SU(2)-invariant (no symmetry breaking). For SU(2)-invariant state, the expression of the
negativity for spin pair i and j is given by [18, 19, 22]

Nij = 1
3 max[0, 1 − 〈si · sj 〉 − 〈(si · sj )

2〉] + 1
2 max[0, 〈(si · sj )

2〉 − 2]. (4)

We see that the negativity is completely determined by two correlators 〈si · sj 〉 and 〈(si · sj )
2〉.

By using the swap operator and the singlet projector given by

Sij = si · sj + (si · sj )
2 − 1 (5)

Pij = 1
3 [(si · sj )

2 − 1], (6)

we reexpress the negativity as

Nij = 1
3 max[0,−〈Sij 〉] + 1

2 max[0, 〈3Pij − 1〉]. (7)

From this expression, it is evident that there are two entanglement witnesses

W1 = Sij , (8)

W2 = 1 − 3Pij . (9)

Indeed, the negativity is closely related to EWs, and by studying negativity, one may find some
useful entanglement witnesses. Moreover, we give another form of the negativity

Nij = 3
2 max

[
0,

〈
s2
z ⊗ s2

z + 2sxsy ⊗ sysx

〉 − 2
3

]
+ max

[
0, 1

3 − 〈
sz ⊗ sz + s2

z ⊗ s2
z + 2sxsy ⊗ sysx

〉〉]
, (10)

following from the SU(2) symmetry.

2.2. The XXZ model

When studying negativity in the XXZ model, we can make use of the symmetries in the model
to simplify the negativity expression. Due to the U(1) symmetry ([e−iθJz , H ] = 0, Jα =∑N

i=1 siα, α = x, y, z.), in the basis {|02〉, |11〉, |20〉, |01〉, |10〉, |12〉, |21〉, |00〉, |22〉}, the
reduced density matrix of two spins can always be written in a block diagonal form as

ρij = diag(A3×3, B2×2, C2×2, a8, a9) (11)

with A,B and C given by

A =

a1 b1 b2

b1 a2 b3

b2 b3 a3


 , B =

(
a4 b4

b4 a5

)
, C =

(
a6 b5

b5 a7

)
. (12)

Here, state |n〉 ≡ |j = 1,m = 1 − n〉 for one spin.
For the diagonal elements, we have

a1 = a3, a8 = a9, a4 = a5 = a6 = a7. (13)

As an example, we prove the first equality, and the others can be similarly proved. For one
spin, the following relations exist:

|0〉〈0| − |2〉〈2| = sz, |0〉〈0| + |2〉〈2| = s2
z

|0〉〈0| + |1〉〈1| + |2〉〈2| = 1.
(14)

From the above equation, one can write the three projectors in terms of operators sz and s2
z as

|0〉〈0| = s2
z + sz

2
, |1〉〈1| = 1 − s2

z, |2〉〈2| = s2
z − sz

2
. (15)
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The diagonal elements a1 and a3 can be written as the expectation values of the following
operators

|0〉〈0| ⊗ |2〉〈2| = 1
4

(
s2
z ⊗ s2

z − sz ⊗ sz − s2
z ⊗ sz + sz ⊗ s2

z

)
|2〉〈2| ⊗ |0〉〈0| = 1

4

(
s2
z ⊗ s2

z − sz ⊗ sz + s2
z ⊗ sz − sz ⊗ s2

z

)
,

(16)

respectively. Due to another symmetry [e−iπJx , H ] = [e−iπJy , H ] = 0, one can easily show
that the expectation values of s2

z ⊗ sz and sz ⊗ s2
z are zero. Thus, we finally obtain a1 = a3.

Similarly, we have a4 = a7, a5 = a6. Then, after using the translational invariant symmetry
of the Hamiltonian, finally we get a4 = a5 = a6 = a7.

Again, due to [e−iπJx , H ] = 0, we obtain

a8 = Tr(|0〉〈0| ⊗ |0〉〈0|ρT )

= Tr(e−iπJx |0〉〈0| ⊗ |0〉〈0| eiπJx ρT ) (17)

= Tr(e−iπs1x |0〉〈0| eiπs1x ⊗ e−iπs2x |0〉〈0| eiπs2x ρT )

= Tr(|2〉〈2| ⊗ |2〉〈2|ρT ) = a9. (18)

In the derivation of the above inequality, we have used the results that

e−iπsx |0〉 = −|2〉, e−iπsx |2〉 = −|0〉, e−iπsx |1〉 = −|1〉, (19)

and these can be obtained from the following fact:

e−iπsx = 1 − 2s2
x = −


0 0 1

0 1 0
1 0 0


 . (20)

Similarly, for non-diagonal elements, b1 = b3 and b4 = b5. Then, the reduced density matrix
can now be written in a simplified form as

ρ12 = diag(A3×3, B2×2, B2×2, a8, a8) (21)

with A,B and C given by

A =

a1 b1 b2

b1 a2 b1

b2 b1 a1


 , B =

(
a4 b4

b4 a4

)
. (22)

Now, we make the PT with respect to the second spin system. After the PT, in the basis
spanned by {|00〉, |11〉, |22〉, |01〉, |12〉, |10〉, |21〉, |02〉, |20〉}, the reduced density matrix can
also be written in a block diagonal form as

ρ
T2
12 = diag(C3×3,D2×2,D2×2, a1, a1) (23)

with C,D given by

C =

a8 b4 b2

b4 a2 b4

b2 b4 a8


 , D =

(
a4 b1

b1 a4

)
. (24)

Formally, matrices ρ12 and ρ
T2
12 are connected by the following exchanges a1 ↔ a8, b1 ↔ b4.

The matrix C can be further written in a block-diagonal form with one 2 × 2 block and
another 1 × 1 as

E =

a8 + b2

√
2b4 0√

2b4 a2 0
0 0 a8 − b2


 ,
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in the basis
{

1√
2
(|02〉 + |20〉), |11〉, 1√

2
(|02〉 − |20〉)}. Then, it is straightforward to find all

nine eigenvalues of the partially transposed matrix, and among them, only the following three
eigenvalues are possibly negative

λ1 = 1
2

[
a8 + b2 + a2 −

√
(a8 + b2 − a2)2 + 8b2

4

]
,

λ2 = a8 − b2,

λ3 = a4 − |b1|.
(25)

Formally, the negativity can be written as

N = max[0,−λ1] + max[0,−λ2] + max[0,−λ3]. (26)

Relevant elements of the reduced density matrix can be written in terms of spin operators
as follows

a8 = 1
4

〈
s2
z ⊗ s2

z + sz ⊗ sz

〉
a4 = 1

2

〈
s2
z ⊗ I − s2

z ⊗ s2
z

〉
a2 = 〈

1 − 2s2
z ⊗ I + s2

z ⊗ s2
z

〉
b2 = 1

8

〈
s2

+ ⊗ s2
− + s2

− ⊗ s2
+

〉
= 1

4

〈(
s2
x − s2

y

) ⊗ (
s2
x − s2

y

)
+ (sxsy + sysx) ⊗ (sxsy + sysx)〉

b1 = − 1
4 〈szs+ ⊗ szs− + s−sz ⊗ s+sz〉

= − 1
2 〈szsx ⊗ szsx + sxsz ⊗ sxsz〉

b4 = 1
4 〈szs+ ⊗ s−sz + s−sz ⊗ szs+〉

= 1
2 〈szsx ⊗ sxsz + sxsz ⊗ szsx〉.

Then, as a byproduct, from the above equation and equation (26), one may find that the
operator

W3 = a8 − b2

= 1
4

[
s2
z ⊗ s2

z + sz ⊗ sz − 1
2

(
s2

+ ⊗ s2
− + s2

− ⊗ s2
+

)]
(27)

is an EW which detects entanglement in the XXZ model. By considering several symmetries
in the model, we have obtained the analytical expression of the negativity, and found a new
EW.

3. Numerical results

Next, we provide numerical results of negativity and EWs for the BB and XXZ models. The
exact-diagonalization method is employed.

3.1. The BB model

In figure 1, we plot the negativity of two nearest spins and ground-state expectation values of
EWs versus θ for 12 spins. We observe a maximum of negativity and a minimum of 〈W1〉 at
θ = π/4, which separate the Haldane phase (−π/4 < θ < π/4) and the trimerized phase
(π/4 < θ < π/2). We see that both the negativity and the EW W1 can detect this QPT point.
Before θ = π/4, there is a minimum of the negativity, which results from the competition
of two EWs. Clearly, this minimum point is singular even for a finite system, and does not
correspond to the QPT point.
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Figure 1. Negativity and ground-state expectation values of EWs versus θ for 12 spins.

For π/2 < θ < 5π/4, the ground state is ferromagnetic and degenerate. In this range, the
negativity is zero. Comparing the pairwise entanglement with bipartite entanglement between
the two nearest-neighbor spins and the rest, the pairwise negativity is well defined, while, due
to the degeneracy, the bipartite entanglement quantified by the von Neumann entropy is not
well defined. This is one of the merits of our approach using negativity.

For θ > 5π/4, we observe a maximum of the negativity and a minimum of 〈W2〉 at
θ = 3π/2. Detailed analysis on the energy spectra reveals that the first excited state at this
point is eight-fold degenerate, and at one side of this point it is three-fold degenerate, and at
another side five-fold degenerate. Then the extremum of the negativity and 〈W2〉 is closely
related the high symmetry at this point. This phenomenon is very similar to the case of the
concurrence at � = 1 in spin-1/2 XXZ model, [23] so it may be another critical point in
the BB model. However, at θ = 7π/4, corresponding to a QPT point separating dimerized
phase (5π/4 < θ < 7π/4) and Haldane phase, one cannot find any anomalous behaviors of
negativity and EWs.

Due to the nearest-neighbor nature of the interactions, entanglement of the nearest-
neighbor pair is larger than that of non-nearest-neighbor pairs. And for spin-1/2 systems,
it was found that the entanglement vanishes quickly as the separation distance of two spins
increases [11]. Here, for spin-1 system, we find that the entanglement is relatively stable
against separation distance for the BB model with θ = (1.25π)+. The numerical result is
shown in figure 2. The symmetry in the figure is easily understood due to the periodic boundary
condition. It is evident that all pairs of spins are entangled, and, of course, the entanglement
decreases as the absolute separation distance increases. This relatively long range feature of
negativity is in big contrast with that of concurrence in spin-1/2 systems, and may result from
that higher-dimensional nature and special properties of integer-spin systems.

3.2. The XXZ model

Let us consider the spin-1 XXZ model. At the isotropic point (� = 0 ), the spin excitation
spectrum is gapped according to Haldane’s conjecture [1]. As � increases, this gap vanishes
around � = �u ≈ 1.18. At this point, the system undergoes a Kosterlitz–Thouless type of
phase transition from the gapped phase to gapless Néel phase. The gapped phase extends over
the anisotropy parameter (�l � � � �u) including the isotropic point, and �l is estimated
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Figure 2. Negativity N1,1+k versus separation distance k in the BB model with θ = (1.25π)+ for
12 spins.
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Figure 3. Negativity versus � for different number of spins.

to be 0.61 from several independent calculations [7]. The transition from the XY phase to the
gapped phase occurs at � = �l . From the two-spin reduced density matrix, we may obtain
the von Neumann entropy quantifying the entanglement of the two spin with the rest, and the
negativity quantifying the entanglement between the two spins. Both these two quantities can
serve as indicators of QPT. It is argued that the two-site entropy is better to indicate QPT than
single-site entropy and order parameters [16]. We will see that the negativity is more sensitive
to variation parameters than the von Neumann entropy.

In figure 3, we plot the negativity versus �. We observe a maximum of negativity at the
SU(2) point � = 1. Similarly, the von Neumann entropy also displays a maximum at this
point [15]. Although it is an extreme point, it does not correspond to a QPT point as the system
is gapped on both sides of the point, contrary to the case of spin-1/2 XXZ systems [24].

For the size of our system being large enough, we observe that there are two minima at
�1 and �2 beside the SU(2) point. These minima do not happen in the behaviors of the von
Neumann entropy, indicating that the negativity is more sensitive to variation of parameters.
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Figure 4. Expectation value of entanglement witness of W3 versus � for different number of
spins.

As system size increases, the �1 tends to �l , and the �1 to �u, respectively, supporting that
QPT happens at � = �u and �l .

We have found a entanglement witness W3 (27) in the last section, and now see its
behaviors against �. The numerical results are given in figure 4. From the figure, however,
the witness W3 cannot witness any QPT points. As we have seen, the negativity indeed signifies
QPT points. There are three terms in the expression of negativity (26), and the competition
among them leads to rich behaviors.

4. Conclusions

In the conclusion, we have given a general expression of negativity and an EW for the XXZ
spin-1 model by considering several symmetries. In fact, it is applicable to more general
models such as the following bilinear–biquadratic model with a single-ion anisotropy:

H =
N∑

i=1

cos θ(sixsi+1x + siysi+1y + �sizsi+1z) + sin θ(sixsi+1x + siysi+1y + �sizsi+1z)
2

+ D

N∑
i=1

s2
iz. (28)

This simply because the three symmetries we used in the derivation of negativity in the XXZ
model still exist in the above general model.

Using the analytical result of negativity, we have numerically investigated the negativity
in the two spin-1 model, displaying QPTs. It was found that the negativity is an efficient
indicator for QPT points. Although it cannot signify all, it indeed can identify many QPT
points. Comparing two-site negativity and two-site entropy, the negativity is more sensitive
to variation of parameters involved in the Hamiltonian, suggesting that it is a better indicator
than the entropy. We also studied the behaviors of several EWs, and they can partly identify
QPT points. Of course, one can use other EWs, which may work better than the present EWs.
This deserves further investigations.

The method using negativity and EWs to study QPT is very convenient to use for numerical
calculations, and it is applicable to higher-spin systems (not limited to spin-1 systems). One
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can also consider the case of more than two sites. But it is hard to get analytical results, and in
addition, quantification of multipartite entanglement in higher-spin systems is very difficult.
It is expected that the development of entanglement is very helpful to study QPT.
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